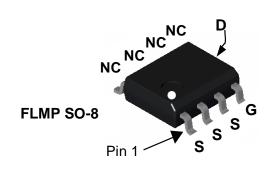
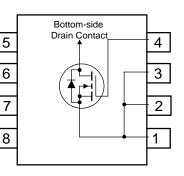
FAIRCHILD SEMICONDUCTOR®

FDS7296N3


30V N-Channel PowerTrench[®] MOSFET

General Description

This N-Channel MOSFET in the thermally enhanced SO8 FLMP package has been designed specifically to improve the overall efficiency of DC/DC converters. Providing a balance of low $R_{DS(ON)}$ and Qg it is ideal for synchronous rectifier applications in both isolated and non-isolated topologies. It is also well suited for high and low side switch applications in Point of Load converters.


Applications

- Secondary side Synchronous rectifier
- Synchronous Buck VRM and POL Converters

Features

- 15 A, 30 V $R_{DS(ON)} = 8 \ m\Omega @ V_{GS} = 10 \ V R_{DS(ON)} = 11 \ m\Omega @ V_{GS} = 4.5 \ V$
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- Optimized for low Qgd to enable fast switching and reduced CdV/dt gate coupling.
- SO-8 FLMP for enhanced thermal performance in an industry-standard package outline.

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			±20	V
ID	Drain Curre	ent – Continuous	(Note 1a)	15	A
		– Pulsed		60	
P _D	Power Dissipation for Single Operation		n (Note 1a)	3.0	W
			(Note 1b)	1.5	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C
Therma	I Charac	teristics			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		ient (Note 1a)	40	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)			0.5	°C/W
Packag	e Markin	g and Ordering I	nformation		
Device Marking		Device	Reel Size	Tape width	Quantity
FDS7296N3		FDS7296N3	13"	12mm	2500 units

©2004 Fairchild Semiconductor Corporation

Electrical Characteristics $T_A = 25^{\circ}C$ unless otherwise noted Symbol Min Units Parameter **Test Conditions** Тур Max **Drain-Source Avalanche Ratings** W_{DSS} Drain-Source Avalanche Energy Single Pulse, $V_{DD} = 27 \text{ V}$, $I_D=15 \text{ A}$ 189 mJ Drain-Source Avalanche Current 15 А I_{AR} **Off Characteristics** Drain–Source Breakdown Voltage 30 V $\mathsf{BV}_{\mathsf{DSS}}$ $V_{GS} = 0 V$, $I_{D} = 250 \,\mu A$ Breakdown Voltage Temperature ΔBV_{DSS} $I_D = 250 \ \mu$ A, Referenced to 25° C 28 mV/°C $\Delta T_{\rm J}$ Coefficient Zero Gate Voltage Drain Current $V_{DS} = 24 V$, $V_{GS} = 0 V$ 1 IDSS μΑ Gate-Body Leakage nA $V_{GS} = \pm 20 V$, $V_{DS} = 0 V$ ± 100 I_{GSS} On Characteristics (Note 2) V_{GS(th)} Gate Threshold Voltage $V_{DS} = V_{GS}$, 1 1.8 3 V $I_{D} = 250 \,\mu A$ Gate Threshold Voltage $I_D = 250 \,\mu\text{A}$, Referenced to 25°C $\Delta V_{GS(th)}$ -0.5 mV/°C ΔT_{J} **Temperature Coefficient** Static Drain–Source R_{DS(on)} $I_{D} = 15 A$ 6.5 $V_{GS} = 10 V$, 8 mΩ **On-Resistance** $V_{GS} = 4.5 V,$ $I_{D} = 13 \text{ A}$ 8.2 11 9.7 $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 15 \text{ A}, \text{T}_{J} = 125^{\circ}\text{C}$ 13 Forward Transconductance $V_{DS} = 10 V$, $I_{D} = 15 \text{ A}$ 58 S **g**_{FS} **Dynamic Characteristics** $\boldsymbol{C}_{\text{iss}}$ Input Capacitance 1540 pF $V_{DS} = 15 V$, $V_{GS} = 0 V$, **Output Capacitance** f = 1.0 MHz pF C_{oss} 430 C_{rss} **Reverse Transfer Capacitance** 140 pF Gate Resistance $V_{GS} = 15 \text{ mV},$ f = 1.0 MHz 1.0 R_{G} Ω Switching Characteristics (Note 2) $V_{DD} = 15 V$, $I_{D} = 1 A$, Turn-On Delay Time 10 20 t_{d(on)} ns $V_{GS} = 10 V$, $R_{\text{GEN}} = 6 \; \Omega$ Turn-On Rise Time 4 9 tr ns Turn-Off Delay Time 27 44 ns t_{d(off)} Turn-Off Fall Time tf 14 25 ns $V_{DS} = 15 \text{ V}, I_{D} = 15 \text{ A}, V_{GS} = 5 \text{ V}$ Qg Total Gate Charge 12.7 18 nC $V_{DS} = 15 \text{ V}, I_{D} = 15 \text{ A}, V_{GS} = 10 \text{ V}$ nC Qg **Total Gate Charge** 23 32 Q_{gs} Gate-Source Charge 4.2 nC Q_{gd} Gate-Drain Charge 3.5 nC **Drain–Source Diode Characteristics and Maximum Ratings** Maximum Continuous Drain-Source Diode Forward Current Is 2.5 А Drain-Source Diode Forward V_{SD} $V_{GS} = 0 V$, $I_{S} = 2.5 A$ 0.7 1.2 V (Note 2) Voltage t_{rr} **Diode Reverse Recovery Time** $I_{\rm F} = 15 \, \rm A$ 27 nS

 $d_{iF}/d_{t} = 100 \text{ A/}\mu\text{s}$

Qrr

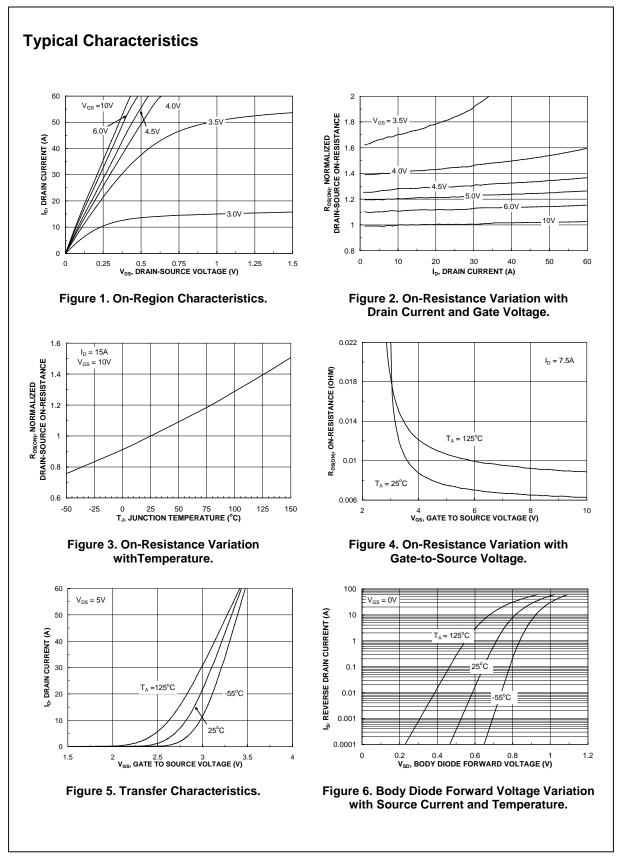
Diode Reverse Recovery Charge

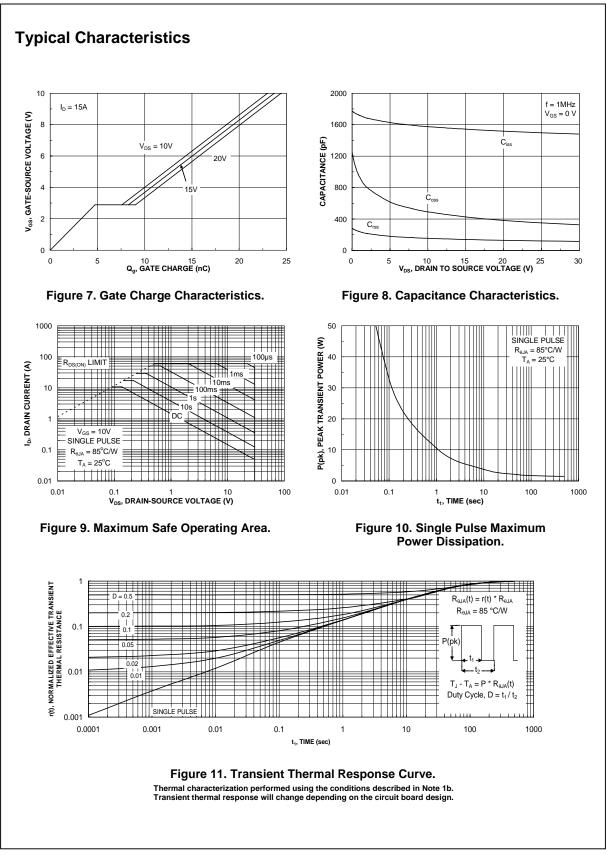
nC

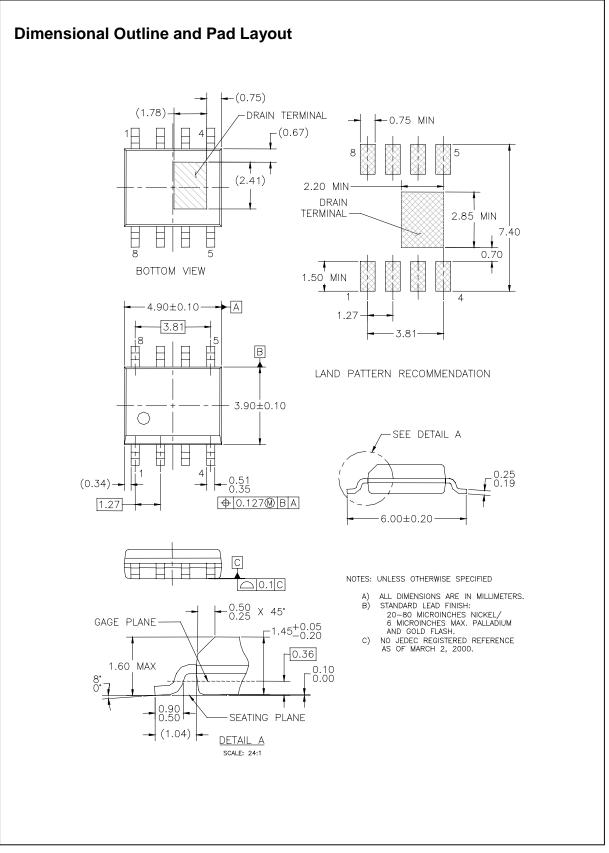
19

Notes:

1. R_{6JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{6JC} is guaranteed by design while R_{6CA} is determined by the user's board design.




a) 40°C/W when mounted on a 1in² pad of 2 oz copper


b) 85°C/W when mounted on a minimum pad of 2 oz copper

Scale 1 : 1 on letter size paper \$\$ 2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty Cycle < 2.0%

FDS7296N3 Rev C(W)

FDS7296N3 Rev C(W)

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic®
E ² CMOS [™]	I²C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect™	OCXPro™	RapidConnect™	UHC™
FACT Quiet Serie		OPTOLOGIC [®]	µSerDes™	UltraFET [®]
Across the board The Power Frand Programmable A		OPTOPLANAR™ PACMAN™ POP™	SILENT SWITCHER [®] SMART START™ SPM™	VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. 113